Cluster number selection for a small set of samples using the Bayesian Ying-Yang model

نویسندگان

  • Ping Guo
  • C. L. Philip Chen
  • Michael R. Lyu
چکیده

One major problem in cluster analysis is the determination of the number of clusters. In this paper, we describe both theoretical and experimental results in determining the cluster number for a small set of samples using the Bayesian-Kullback Ying-Yang (BYY) model selection criterion. Under the second-order approximation, we derive a new equation for estimating the smoothing parameter in the cost function. Finally, we propose a gradient descent smoothing parameter estimation approach that avoids complicated integration procedure and gives the same optimal result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation on Several Model Selection Criteria for Determining the Number of Cluster

Abstract Determining the number of clusters is a crucial problem in clustering. Conventionally, selection of the number of clusters was effected via cost function based criteria such as Akaike’s information criterion (AIC), the consistent Akaike’s information criterion (CAIC), the minimum description length (MDL) criterion which formally coincides with the Bayesian inference criterion (BIC). In...

متن کامل

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

Studies of model selection and regularization for generalization in neural networks with applications

This thesis investigates the generalization problem in artificial neural networks, attacking it from two major approaches: regularization and model selection. On the regularization side, under the framework of Kullback–Leibler divergence for feedforward neural networks, we develop a new formula for the regularization parameter in Gaussian density kernel estimation based on available training da...

متن کامل

Bayesian Ying - Yang system , best harmony learning , and five action circling

Firstly proposed in 1995 and systematically developed in the past decade, Bayesian YingYang learning is a statistical approach for a two pathway featured intelligent system via two complementary Bayesian representations of a joint distribution on the external observation X and its inner representation R, which can be understood from a perspective of the ancient Ying-Yang philosophy. We have q(X...

متن کامل

New Advances on Bayesian Ying-Yang Learning System With Kullback and Non-Kullback Separation Functionals

In this paper we extend Bayesian Kullback YING YANG BKYY learning into a much broader Bayesian Ying Yang BYY learning System via using di erent sep aration functionals instead of using only Kullback Diver gence and elaborate the power of BYY learning as a gen eral learning theory for parameter learning scale selection structure evaluation regularization and sampling design with its relations to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2002